
3 Project Plan 
3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES 

Our project will implement the Agile methodology for project management and task completion.
We chose this method because it is centered around frequent scrum meetings which allow for
group discussion. Since we have such a small team and our project is mainly software
development related, these scrum meetings will allow our team to gather insight from other team
members as software-related obstacles arise.

Since many of the tasks we have designated will have tasks that build on each other, the Agile
methodology will allow us to work from the beginning and power through each task in the scrum
without strict deadlines. Although we have attempted to make a rough estimate of time that will
need to be allocated for each task, it is difficult to predict where specific obstacles with
integration and programming will fall. Because of these reasons, the Waterfall method was less
appealing to our team since the time estimates are not as reliable with a mainly software
development project where we are utilizing new tools we are not familiar with.

Our team will track progress through Github with individual folders for front-end and backend
work. Since our project will utilize a VM and MySQL database, we will continue documenting
progress in Google Docs and communicating via Text for information that is not on Github. We
will follow the task decomposition outlined in section 3.2 for knowledge of which task should be
started after completing a previous one.
 

3.2 TASK DECOMPOSITION 

Our whereabouts web application can be broken down into two major subsections - frontend and
backend. Where the frontend, client side, will be responsible for managing user input, while the
backend, server side, will run whereabout algorithm computation and handle database
interaction. Since our team is adopting an Agile approach, team members will begin by working
on the basic user authentication tasks and continue down the tasks listed in the decomposition
legend - Figure 1. The major task groupings and the corresponding sub-tasks are highlighted
below. Figure 1 illustrates the major tasks and how they interact from a systems-level
perspective.

● Frontend
○ User authentication

■ Create login display, and form for accepting user input
■ Submit credentials to backend for authentication

○ Dataset uploads and format specification process
■ Create dataset upload and configuration display
■ Complete local file browse and select functionality
■ Check uploaded files formatting for compatibility

○ Query creation, configuration, and submission requests
■ Create query creation and configuration display
■ Query validator, prevent “long” query runtimes as specified in constraints

section.



○ Visualization window and underlying engine
■ Setup inclusion of necessary plotting libraries
■ Add visualization window the the interface display
■ Create plotting handlers for datasets and whereabout data

● Backend
○ Setup Database
○ Authenticate login/signup

■ Query database for submitted credentials or add new user
■ Send error message or authentication token

○ Commit datasets to database along with the format specification
■ Query database and add new entries

○ Setup query endpoints for supported query types (i.e. range, contact)
○ Implement whereabout algorithms and package results to be sent to the frontend

for visualization.

 



3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

This section seeks to set progres goals and determine what successful accomplishment should
look like.

Milestones
Shown below are the planned milestones we expect to accomplish. The milestones generated are
based on the tasks and subtasks listed in section 3.2. For estimated completion of each task,
reference the Gantt charts included in section 3.4.

Spring Semester

● Complete project frameworks and libraries
● Define and identify backend API, the contract between function calls from frontend and

backend.
● Setup code base (Git, Vue Project)
● Develop preliminary versions of:

○ UI components
○ Database setup

● Finalize design documentation

Fall Semester

● Frontend
○ Render HTML passed from backend to frontend interface
○ Update the HTML from Vue application instance
○ Successfully make a request from frontend to backend
○ User can load file through interface
○ Can distinguish a loaded files format compatibility (i.e. able to be parsed with

single delimiter specified)
○ Users can view a dataset through the interface and specify columns/rows (i.e.

what data is - positional, timestamp, label, etc.)
○ Displaying a visualization window using plot libraries provided examples
○ Producing an aesthetic visualization window with data points from user dataset
○ Working whereabout query interface that supports a single query algorithm and

type where data is manual entered
○ Visualization engine can take whereabout algorithm output and render meaningful

interpretation to the visualization window
○ Whereabout query interface supporting multiple query types
○ Visualization engine supports visualization of multiple query types

● Backend
○ Store and retrieve test credentials in JSON format to database
○ Successfully register a new user to the database
○ Correctly authenticate an existing user by serving authentication token
○ Store three datasets with unique formatting into database
○ Successfully upload a new dataset and store to database
○ Whereabout query endpoint can successfully take an input query from frontend

and fetch necessary resources needed by the corresponding whereabout algorithm



○ Single whereabout algorithm implemented and producing correct output
○ Whereabout algorithm output interpreted and formatted in accordance to frontend

needs
○ Backend supports multiple query types and produces correct output

Metrics and Evaluation Criteria
To measure the progress of our efforts and milestones completion we will be using the following
metrics:

● User interface components will complete the given action within a timeframe of a few
seconds as the upper-bound. Action will be verified through use of print statements or an
equivalent.

● Executing algorithms on the backend should complete their action within a timeframe
given by our constraints section - no longer than 30 seconds. A timer will monitor the
duration of execution.

● Visualizations of whereabout algorithm output should be correct. This will be evaluated
by using known scenarios (i.e. test data provided by the client). This methodology will
also be used to verify algorithm implementation correctness.

3.4 PROJECT TIMELINE/SCHEDULE 



3.5 RISKS AND RISK MANAGEMENT/MITIGATION 

The following section contains a breakdown of the possible risk, description of risk, probability
of occurrence, and correlated mitigation.

● Frontend
○ User authentication

■ Security vulnerabilities/issues, compatibility issues with certain devices or
browsers.

■ Probability: .25
■ Testing across multiple platforms during development to ensure

compatibility.
○ Dataset uploads and format specifications process

■ uploading large datasets could lead to eventual performance issues, also
file formatting might become problematic.

■ Probability: .3
■ Limit to only accept one type of file for uploading data, optimize server

side processing to help handle larger data sets.
○ Query creation, configuration, and submission requests

■ More complex/extensive queries may lead to performance issues, failure
to validate and process certain types of query configurations for different
desired outcomes.

■ Probability: .35
■ Optimizing query execution and extensive testing of all intended end user

combinations/types of queries from data sets.



○ Visualization window and underlying engine
■ Performance degradation with larger data sets and local device constraints,

integration issues with visualization tools such as pan, zoom, and move in
several axes

■ Probability: .45
■ Testing tool compatibility and implementing strategies to manage larger

datasets more efficiently without sacrificing performance.

● Backend
○ Setup database

■ Issues with scaling in terms of volume of data, limitations in speed might
create bottlenecks.

■ Probability: .5
■ Performance testing and optimization of both database queries and

indexes.
○ Authenticate login/signup

■ Security vulnerabilities in terms of authentication
■ Probability: .1
■ Ensuring correct security measures in user login/signup.

○ Commit datasets to database (and format specification)
■ Data integrity issues during insertion into database, compatibility issues

with database configurations
■ Probability: .15
■ Testing compatibility across different database environments during

development, implement transaction integrity checks for data entering the
database.

○ Setup query endpoints for supported query types
■ Inefficiency processing of different query types might lead to performance

bottleneck issues, full support missing from all different required query
types.

■ Probability: .4
■ Continuous refinement and adjustment of query endpoint functionalities

based on user feedback and issues/concerns discovered during overall
development.

○ Implement whereabouts algorithms to send to frontend for visualization
■ Ensuring correct visualization for easy user interpretation of data sets,

greater complexity of algorithm can result in performance degradation,
integration issues with backend architecture.

■ Probability: .6
■ Performance optimization in optimizing algorithm(s) to ensure most

efficiency when it comes to computation, involving continuous monitoring
and logging methods to detect anomalies in behavior of algorithm(s),
implement extensive documentation to aid in understanding and
troubleshooting eventual issues.



 

3.6 PERSONNEL EFFORT REQUIREMENTS 

The table below contains a list of tasks, estimated hours necessary to complete, and a brief
explanation of each task. Each task’s hours may be divided between multiple team members as
will be determined by the completion of blocking tasks.

Task Estimated Hours
(total not individual)

Explanation

Login/Create Account 10 Setting up GUI and Backend Calls to the
Spring Boot server.

Check File Type 15 Make sure the file type is correct and
formatting in the new file is correct. Send
dataset to Spring boot server.

Manage Datasets 20 Receive datasets from the database that
the user selects. Update selected dataset if
necessary.

Dataset Format Engine 25 Checks that formatting in the updated
dataset is correct.

Active Dataset Handler 20 Handles Current dataset being used for
visualization.

File Issues Testing 15 Test all File Issues from Check File to
Dataset Handlers works individually and
when combined together for the front-end.

Creating Queries
Handler

25 Selection GUI and background processes
for creating Queries related to current
dataset.

Create Query Validator 20 Checks that Query from user is valid to be
sent to backend and processed in Query
endpoints.

Queries Testing 15 Testing For Creating and validating to see
that they work individually together and
with the file modules.

Visualization Window 20 Create the window for the visualization of
the datasets with interaction for the user
and with the created query for it.



Visualization
Configuration

15 GUI and Configuration methods for
visualization of Current dataset with
options for how the user wants to
customize the visualization

Visualization Engine 40 Setting up Mapbox tool to use the
modified query from the backend, the
active dataset, and the visualization
configuration from the user to visualize in
the way the user wants

Visualization Testing 30 Testing visualization parts individually
and checking that it integrates with the
other front end modules correctly and
effectively

Authenticate/signup 10 Create backend request receivers for
Authenticating user signin and creating
new users. Create a MySQL database.

Commits to Database 20 Receives new datasets from the front end
and sends them to the query engine to be
stored in the database.

Manage Users Datasets 20 Receives dataset request from user and
sends info to query engine to get dataset.
Sends chosen dataset from users database,
and receives user updated datasets from
the front end and sends them to the query
engine to update dataset in database.

Dataset Testing 20 Test that all Receiving and Sending from
the front end is working as required and
will work with the front end.

Query Endpoints 25 Takes received query from front end and
sends to query engine for saving to
database and use in the algorithms.

Query Engine 25 Saves received data to MySQL. returns
requested info from MySQL database.

Query Testing 20 Test that query modules work together and
with all connected modules

Whereabout Algorithms 40 Uses user selected algorithm to ready
query for visualization.



Packager 40 Packages algorithm output to be sent to
Visualization in front end

Algorithm Testing 25 Tests that all algorithms in backend works
with query options from the front end

3.7 OTHER RESOURCE REQUIREMENTS 

.  Below is a preliminary list of resources that will be necessary to consider in the completion of
this project:

● Github Page
● VM
● MySQL database
● Javascript/Springboot Libraries
● Website/Domain Name


